VeA and LaeA transcriptional factors regulate ochratoxin A biosynthesis in Aspergillus carbonarius.

نویسندگان

  • A Crespo-Sempere
  • S Marín
  • V Sanchis
  • A J Ramos
چکیده

Ochratoxin A (OTA) is a mycotoxin with nephrotoxic, teratogenic and immunotoxic properties which represents a serious risk for human and animal health. Aspergillus carbonarius is considered the main OTA-producing species in grapes and products such as raisins, wine or juices, although it has also been isolated from coffee, cocoa and cereals. Till now not much information is available about regulatory mechanisms of OTA production by A. carbonarius. A better understanding of how environmental factors influence OTA production and which genes are involved in its regulation could help us design new control strategies. In this study, we have evaluated the role of VeA and LaeA transcriptional factors, which have been shown to regulate secondary metabolism in response to light in A. carbonarius. To this aim, veA and laeA genes were deleted in an ochratoxigenic A. carbonarius strain by targeted gene replacement using Agrobacterium tumefaciens-mediated transformation. Loss of veA and laeA in A. carbonarius yields to an organism with slight differences in vegetative growth but a strong reduction in conidial production. A drastic decrease of OTA production that ranged from 68.5 to 99.4% in ΔveA and ΔlaeA null mutants was also observed, which was correlated with a downregulation of a nonribosomal peptide synthetase involved in OTA biosynthesis. These findings suggest that VeA and LaeA have an important role regulating conidiation and OTA biosynthesis in response to light in A. carbonarius in a similar way to other fungi where functions of VeA and LaeA have been previously described. This is the first report of a transcriptional factor governing the production of OTA by A. carbonarius.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Essential Oils Modulate Gene Expression and Ochratoxin A Production in Aspergillus carbonarius

Ochratoxin A (OTA) is a mycotoxin, mainly produced on grapes by Aspergillus carbonarius, that causes massive health problems for humans. This study aims to reduce the occurrence of OTA by using the ten following essential oils (E.Os): fennel, cardamom, anise, chamomile, celery, cinnamon, thyme, taramira, oregano and rosemary at 1 µL/mL and 5 µL/mL for each E.O.As a matter of fact, their effects...

متن کامل

Expression of aflR, veA and laeA as regulators of aflatoxins and cyclopiazonic acid biosynthesis pathway in Aspergillus flavus

In this study, the production of aflatoxin B1 (AFB1) and cyclopiazonic acid (CPA) was investigated in toxigenic and non-toxigenic Aspergillus flavus with respect to expression of aflR, veA and laeA genes that are involved to toxins production. A. flavus strains were cultured in YES broth at 28 °C for 4 days and the presence of (AFB1) and (CPA) was confirmed and measured by TLC and HPLC. The exp...

متن کامل

RNA-Seq Reveals OTA-Related Gene Transcriptional Changes in Aspergillus carbonarius

Ochratoxin A (OTA) is a mycotoxin harmful for animals and humans. Aspergillus carbonarius is the main responsible for OTA contamination of grapes and derived products. Gene transcriptional profiling of 4 A. carbonarius strains was carried out by RNA-Seq analysis to study transcriptome changes associated with OTA production. By comparing OTA inducing (OTAI) vs. non-inducing (OTAN) cultural condi...

متن کامل

A Saccharomyces cerevisiae Wine Strain Inhibits Growth and Decreases Ochratoxin A Biosynthesis by Aspergillus carbonarius and Aspergillus ochraceus

The aim of this study was to select wine yeast strains as biocontrol agents against fungal contaminants responsible for the accumulation of ochratoxin A (OTA) in grape and wine and to dissect the mechanism of OTA detoxification by a Saccharomyces cerevisiae strain (DISAABA1182), which had previously been reported to reduce OTA in a synthetic must. All of the yeast strains tested displayed an a...

متن کامل

Secondary Metabolism and Development Is Mediated by LlmF Control of VeA Subcellular Localization in Aspergillus nidulans

Secondary metabolism and development are linked in Aspergillus through the conserved regulatory velvet complex composed of VeA, VelB, and LaeA. The founding member of the velvet complex, VeA, shuttles between the cytoplasm and nucleus in response to alterations in light. Here we describe a new interaction partner of VeA identified through a reverse genetics screen looking for LaeA-like methyltr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of food microbiology

دوره 166 3  شماره 

صفحات  -

تاریخ انتشار 2013